Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 18(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36753761

RESUMO

Polyurethane (PU) substrates are biocompatible materials widely used to manufacture endotracheal tubes. However, in common with other biomedical materials, they are liable to the formation of microbial films. The occurrence of pneumonia in intubated patients treated at intensive care units often takes the form of ventilator-associated pneumonia (VAP). The issue relates to the translocation of pathogenic microorganisms that colonize the oropharyngeal mucosa, dental plaque, stomach, and sinuses. New protective materials can provide a more effective therapeutic approach to mitigating bacterial films. This work concerns microcrystalline carbon film containing dispersed silver nanoparticles (µC-Ag) deposited on PU substrates using a physical vapor deposition sputtering process. For the first time, carbon paper was used to produce a carbon target with holes exposing a silver disk positioned under the carbon paper, forming a single target for use in the sputtering system. The silver nanoparticles were well distributed in the carbon film. The adherence characteristics of the µC-Ag film were evaluated using a tape test technique, and electron dispersive x-ray mapping was performed to analyze the residual particles after the tape test. The microbicidal effect of the thin film was also investigated using speciesS. aureus, a pathogenic microorganism responsible for most infections of the lower respiratory tract involving VAP and ventilator-associated tracheobronchitis (VAT). The results demonstrated that µC-Ag films on PU substrates are promising materials for mitigating pathogenic microorganisms on endotracheal tubes.


Assuntos
Nanopartículas Metálicas , Pneumonia Associada à Ventilação Mecânica , Humanos , Carbono , Prata/química , Nanopartículas Metálicas/química , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/etiologia , Materiais Biocompatíveis , Intubação Intratraqueal/efeitos adversos , Antibacterianos
2.
Nanoscale ; 15(3): 907-941, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36629010

RESUMO

Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability. Recently, efforts have been devoted to investigating the effects of quantum confinement in perovskite nanocrystals (PNCs) aiming to fabricate optoelectronic devices based solely on these nanoparticles. In general, the applications are focused on light-emitting diodes, especially because of the high color purity and high fluorescence quantum yield obtained in PNCs. Likewise, they present important characteristics featured for photovoltaic applications, highlighting the possibility of stabilizing photoactive phases that are unstable in their bulk analog, the fine control of the bandgap through size change, low defect density, and compatibility with large-scale deposition techniques. Despite the progress made in the last years towards the improvement in the performance and stability of PNCs-based solar cells, their efficiency is still much lower than that obtained with bulk perovskite, and discussions about upscaling of this technology are scarce. In light of this, we address in this review recent routes towards efficiency improvement and the up-scaling of PNC solar cells, emphasizing synthesis management and strategies for solar cell fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...